

SPI Japan 2016 発表資料

ビデオ撮影及び 画面キャプチャによる 測定・分析プロセスの改善

住友電工情報システム株式会社 第一システム部 第二開発グループ 原田 大輔 2016年10月12日

目次

- 1. 背景(行動分析の実施に至るまで)
- 2. 行動分析の実施方法
- 3. 行動分析の実施結果
- 4. まとめ

1.背景 (行動分析の実施に至るまで)

背景

- 品質向上のために自動テストを導入
 - 開発手順(プロセス)の決定
 - 自動テストの教育実施
- 成果品質は向上
- | 生産性は低下
- なぜ生産性が下がったか原因が分からず、 対策を実施できない。

課題解決に向けて

課題

なぜ生産性が下がったか原因が分からず、 対策を実施できない。

対策

「行動分析」を実施する。

例) 主婦が台所で調理を行う様子をビデオ撮影(測定)。前後30cmだけ移動している事が判明(分析)⇒ より使いやすいキッチンの開発に成功[1]。

「どのような行動が」「どのぐらいの時間」 行われているかが明らかになり、対策を実施すべき ポイントが明確になる。

2.行動分析の実施方法

プログラム開発プロセスと分析対象

- 手動テストブラウザ上で実施するテスト。例)画面遷移の確認…など。
- 自動テスト
 JUnitによるビジネスロジックのテスト。
 例)拠点毎に入力内容の整合性チェック…など。

行動分析の実施手順

- ①ビデオ撮影の実施
- ②行動の特定
- ③開発プロセスの特定
- ④作業時間の分析

①ビデオ撮影の実施

より詳細な行動を知るために、次の二種類を撮影する。

行動の種類	測定方法	行動例
PC上で行う行動	画面キャプチャ	・自動テストの実装 ・プログラムの問題点調査 (コードリーディング) …等
PC外での行動	ビデオ撮影	・紙資料の閲覧 ・紙にフローチャートを書いての ロジック検討 …等

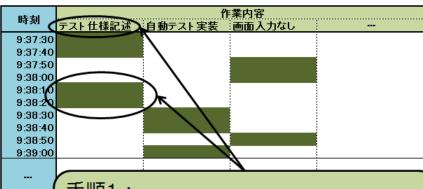
ビデオ撮影のみ … 閲覧している画面の詳細が分からず

画面キャプチャのみ … 画面外の行動が分からず

⇒ 二種類を組み合わせる事で、詳細な行動が分かる。

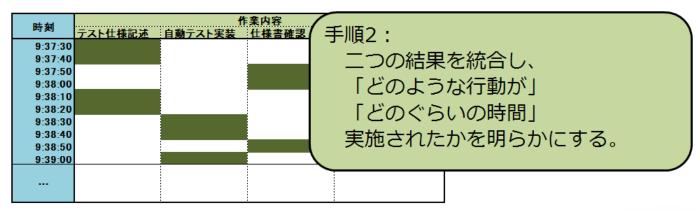
①ビデオ撮影の実施

(当日のみ)


10

②行動の特定(行動分析表の作成)

くビデオ撮影結果>


<画面キャプチャ結果>

手順1:

行動を特定し、その行動をしていた 時間を塗りつぶす。

<統合結果>行動分析表

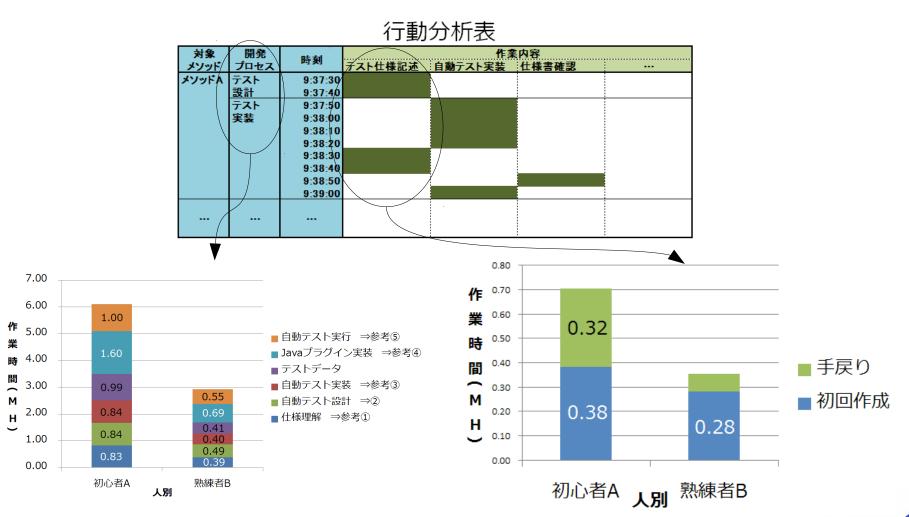
③開発プロセスの決定

各行動がどのプロセスで行われたかを判断するため、 各プロセスの開始基準・終了基準を定める。

開発プロセス	判定基準		
囲光ノロビス	開始基準	完了基準	
自動テスト設計	自動テストソースコードに テスト仕様を記述し始めた時。	自動テストソースコードに テストコードを記述し始めた時。	
自動テスト実装	自動テストソースコードに テストコードを記述し始めた時。	プログラムロジックをJavaの ソースコードに記述し始めた時。	
Javaコード実装	プログラムロジックをJavaの ソースコードに記述し始めた時。	1回目の自動テストを 実行した時。	
自動テスト実行	1回目の自動テストを 実行した時。	1回目のカバレッジ測定を 実行した時。	
カバレッジ測定	1回目のカバレッジ測定を 実行した時。	メソッド開発完了基準を 満たした時。	

③開発プロセスの決定

前ページの定義に基づき、開発プロセスを決定する。


③開発プロセスの決定

行動分析表

		_//				
対象	開発	//時刻	作業内容			
メソッド	ブロセス	一时刻	テスト仕様記述	自動テスト実装	仕様書確認	
メソッド A/	テスト	9:37:30				
	設計/	9:37:40				
/	テスト	9:37:50				
	実装	9:38:00				
		9:38:10				
		9:38:20				
		9:38:30				
		9:38:40				
		9:38:50				
		9:39:00				
		合計	5分10秒	15分20秒		

4作業時間の分析

行動分析表を基に、分析に必要なグラフなどを作成する。

3.行動分析の実施結果

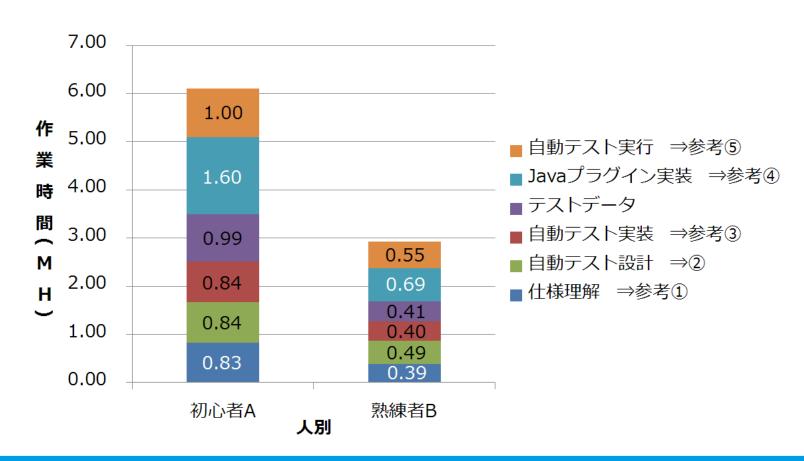
今回の検証内容

初心者A、熟練者Bの2名が同じプログラムを開発し、 自動テスト実装~カバレッジ測定までの行動差を分析する。

画面イメージ

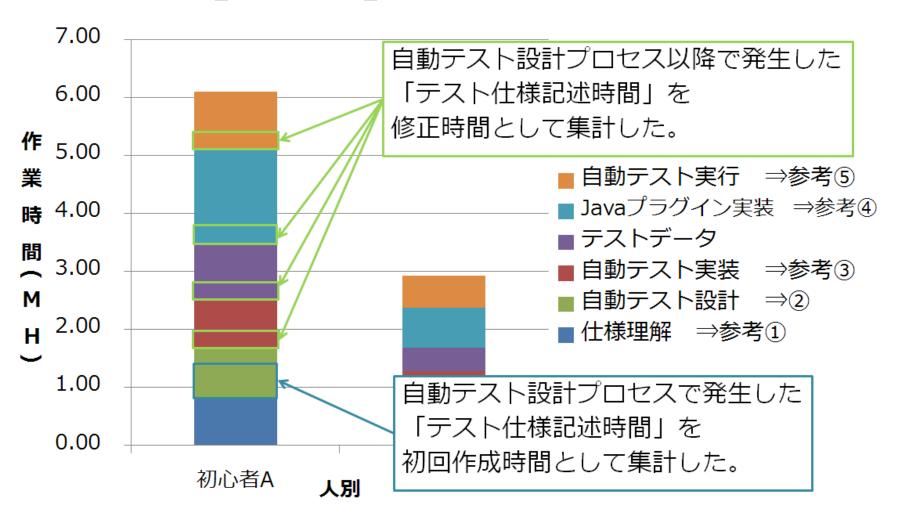
契約先C 12345 住友電工情報システム株式会社

□契約	ITサービスC	ITサービス表示名	□契約年月
	S001	LAN使用料	
	S002	NW使用料	
	S003	ML使用料	
	S004	XXサービス	
	S005	YYサービス	


機能説明

契約先一件に対して、 複数のITサービスを 登録する。

実装内容


メソッド	内容	ステート メント数
A	既にデータが登録済かの入 力値チェック。	20
В	複数項目間のデータ 整合性チェックと、 エラーメッセージの 加工処理。	70
С	ヘッダ1行に対して 明細N件が登録されて いるかのチェック。	30
	120	

分析結果 作業時間内訳

特定のプロセスで生産性が低下している訳ではなく、全てのプロセスで約二倍の作業時間を要している。

自動テスト仕様記述時間の 「初回作成」「修正」集計方法

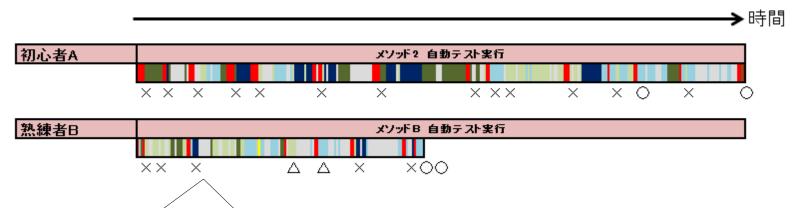
ELECTRIC GROUP

分析結果 自動テスト仕様記述時間の内訳

初回作成時間はほぼ同じだが、修正時間が長い。

19

分析結果 自動テスト(JUnit)実装時間の内訳



自動テスト仕様記述と同じく、修正時間が長い。

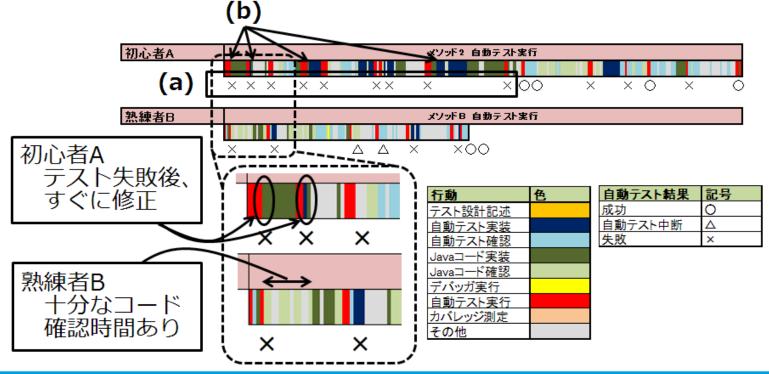
⇒ 修正時間が長い原因を調べるためには さらなる追加データと分析が必要。

分析結果

自動テスト実行〜カバレッジ測定に おける行動の差

合計時間のみならず、 行動順も見える図を作成。

行動	色
テスト設計記述	
自動テスト実装	
自動テスト確認	
Javaコード実装	
Javaコード確認	
デバッガ実行	
自動テスト実行	
カバレッジ測定	
その他	

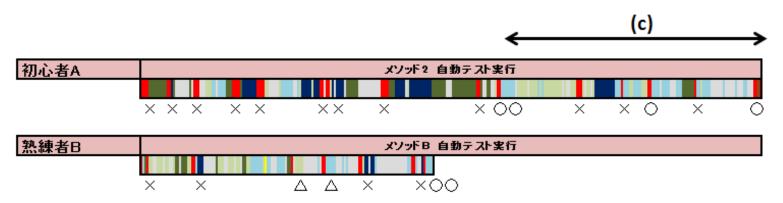

自動テスト結果	記号
成功	0
自動テスト中断	Δ
失敗	×

自動テスト実行結果を データとして追加。

作業時間の差のみならず、 両者の行動の違いも見えてきた。

分析結果

自動テスト実行〜カバレッジ測定に おける行動の差



【初心者の特徴】

- (a)自動テスト実行回数、失敗回数が多い。
- (b)コード確認時間が短く、すぐに修正に着手している。
 - ⇒ 修正が場当たり的。

分析結果

自動テスト実行~カバレッジ測定に おける行動の差

後にヒアリングを実施した。

- ① カバレッジ測定において 自動テストが通らない 個所があった。
- ② 自動テストを追加した。
- ③ 自動テストがNGになった。
- ④ プログラム本体を修正した。

行動	色
テスト設計記述	
自動テスト実装	
自動テスト確認	
Javaコード実装	
Javaコード確認	
デバッガ実行	
自動テスト実行	
カバレッジ測定	
その他	

自動テスト結果	記号
成功	0
自動テスト中断	Δ
失敗	×

【初心者の特徴】

(c)自動テスト成功後もソースコードを修正している。

SUMITOMO

ELECTRIC GROUP

分析結果まとめ

修正時間が多い

- テスト仕様記述の手戻り時間
- テスト実装(JUnit)の手戻り時間

<u>場当たり的修正</u> 自動テスト成功後の修正

分析結果に基づいた対策案

デバッグ時の修正は、十分にコードを確認して 行う方が良い事を周知する。

【生産性が高い人の特徴】

原因を見つけ、それによって 誤った結果が起こっている事を <u>頭の中で動かして確認</u>している。

VS

【生産性が低い人の特徴】

原因かもしれない個所を すぐに修正し、実際に 動かして確認している。

- 生産性が低い人の特徴的な行動を監視・指導する。
 - ・場当たり的修正
 - 自動テスト成功後も修正

4.まとめ

26

SUMITOMO

ELECTRIC GROUP

まとめ

ビデオ撮影による行動分析手法の確立

今回の方法でPG開発以外の行動も分析可能である。

(※)ただし、原因の特定~対策案の作成には多少の試行錯誤が必要。

ビデオ撮影時間の2~3倍で分析が可能

被験者	PG時間(MH)	行動分析時間(MH)
初心者A	7	15
熟練者B	3.5	8

(※)参考文献[2]では3倍。

今後の課題

対策案の実施。

参考文献

- [1]書籍『データサイエンティスト最前線』(2015), 日経BP社.
- [2] クーマー, ヴィジェイ(2015)『101デザインメソッド』 渡部典子訳, 英治出版.

ELECTRIC

ご清聴いただき 誠にありがとうございました。